2016 Fall Transportation-Climate Summit

EVALUATION OF THE 1-DAY, 1%AEP RAINFALL DEPTHS IN OKLAHOMA

Presented by:

Blake C. Kronkosky (P.E.), StateTech Engineering LLC

Blake.Kronkosky@statetecheng.com

Ph.D. "Aspirant" Texas Tech University

About the Presenter

- B.S.C.E (2008) Oklahoma State University
- Licensed TBPE (2013)
- StateTech Engineering (2013)
- M.S.C.E. (2015) Texas Tech University (TTU)
- Doctorial Student (TTU); anticipated graduation May 2017
- Dissertation Topic : Rainfall Statistics/Risk Modeling

Outline

 Review 7 Rainfall Studies between (1917-2013) in Oklahoma :

"brief synopsis of statistical methods and results"

- 1-Day, 100-yr DDF; Isopluvial Maps (Precipitation Contours Maps)
- Compare 1-Day, 100-yr DDF at County Centroids

Outline (Studies)

- 1. Miami Conservancy District (1917), T.R. Part V "Storm Rainfall of Eastern United States", (MCD 1917)
- 2. Floods, "Continuation of (MCD 1917)" (Switzer 1929)
- 3. Rainfall Intensity-frequency Data (USDA 1935)
- 4. TP-40 (USWB 1963)
- 5. Southern Region Climate Center, SRCC (1997)
- 6. DDF Precipitation for Oklahoma, (USGS 1999)
- 7. NOAA Atlas 14 Vol 8 Ver 2.0, (NOAA 2013)

Miami Conservancy District, "Storm Rainfall of Eastern United States", Technical Report V (MCD 1917):

- First Extreme Rainfall study performed in the U.S.
- USWB Daily Rainfall Data (1850-1914); ~4,500 locations
- Excess Rainfall >=1 in/ Day (PDS)
- Aggregated records within 2 –(deg) grids to one record
- Calculated probabilities base on % Ranking (eg. 100-yr Freq
 = 5th largest value in 500 samples)

FIG. 31.—ISOPLUVIAL CHART FOR 100-YEAR PERIOD AND 1-DAY RAINFALL.

Unites States Department of Agriculture-Misc Publication 24 "Rainfall-Intensity-Frequency Data (USDA 1935):

- USWB 5-Min records (1893-1933), 211 locations
- Evaluated Storm Depths ~(28,000 storms)
- DDF for (5min-24 hours), (5-100 year Frequencies)
- Extreme Rainfall (PDS) NOT DESCRIBED IN REPORT
- Used semi-log (Curve fitting) for frequency predictions

FIGURE 59.—Twenty-four-hour rainfall, in inches, to be expected once in 100 years. (Data for Pacific Coast area are given in fig. 62.)

NOAA –Technical Paper 40-"Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years", (TP40 1963):

- 5,000 stations across the U.S. (min 5 years of record)
- Converted (AMS) to (PDS) with ratios
- Adjusted Daily Records by 1.13 factor (sample bias)
- Gumbel Extreme Value Distribution

Rainfall Frequency/Magnitude Atlas for the South-Central United States

- 1st order stations, minimum of 35 years; typical range was 1949-1991
- Adjusted Daily Records by 1.13 factor (sample bias)
- DDF (3hr-24 hr) and (2-100 year) frequencies (PDS)
- semi-log regression
- Manually drawn isohytes

USGS –DEPTH-DURATION FREQUENCY OF PRECIPITATION FOR OKLAHOMA (USGS OK 1999)

- 413 Daily stations (minimum 10 years of record); ~19,200 years of record
- Adjusted Daily Records by 1.13 factor (sample bias)
- DDF (15min-7Days) and (2-500 year) frequencies (AMS)
- L-moment statistics, Generalized Extreme Value (GEV) function
- Geospatial statistics (Kriging) 2 km grid size ;~45,000 cells

Where We Are (USGS OK 1999) 9

NOAA Atlas 14 Vol 8 Ver 2.0 for Oklahoma

- http://hdsc.nws.noaa.gov/hdsc/pfds/
- Data up to 2012
- DDF(5-min to 60 Day) , (1-1,000) Year) , 90% Confidence intervals
- Adjusted Daily Records by 1.13 factor (sample bias)
- L-moment statistics, GEV distribution
- Geospatial statistics using PRISM (MAR) correlation to 30-(arcsec) grids (~0.25 sqm) or (0.5 X 0.5) miles; ~250,000 cells

Where We Are (NOAA Atlas 14 Vol 8) 7

Atlas 14 Comparison

- -Orthorectified/Digitized Data
- -Extracted from County Centroid

COUNTY RATIO PLOTS

HISTOGRAM OF RATIOS

OVERALL SUMMARY STATISTICS

ATLAS14

Test

Dist

Chisq Test "Goodness of Fit"

	Test Dist		null	alt	accept	df	
ſ	chisq test	chisq	Y ind X	Y!Ind X	< 0.05	76	

v	x	Chi-Sqaure				
У	*	Chisq (p-value .05)	value	rank		
ATLAS14	all studies	339.6	7.4	-		
ATLAS14	MCD	56.9	1.3	3		
ATLAS14	NOAA1935	56.9	1.8	4		
ATLAS14	TP40	56.9	1.2	2		
ATLAS14	SRCC	56.9	2.1	5		
ATLAS14	USGS	56.9	1.1	1		

Student Test "Population Mean"

Test Dist		null	alt	accept	df	
μу-μх	T-dist	diff is = 0	diff !=0	> 0.05	76	

v	x	Paired T-Test						
y		delta µ	95% Delta L	95% delta U	p-value	T-value	rank	
ATLAS14	all studies	-0.02	-0.06	0.02	0.32	-	-	
ATLAS14	MCD	-0.09	-0.18	-0.01	0.04	-2.13	3	
ATLAS14	NOAA1935	-0.19	-0.28	-0.11	~0	-4.52	5	
ATLAS14	TP40	0.05	-0.03	0.14	0.21	1.27	2	
ATLAS14	SRCC	0.12	0.01	0.22	0.03	2.16	4	
ATLAS14	USGS	0.01	-0.06	0.09	0.73	0.35	1	

"Overall Score" summation of Rank

Study	chi-sq test	t-test	var-test	pearson	total	rank
MCD	3	3	2	4	12	3
NOAA1935	4	5	5	2	16	5
TP40	2	2	4	3	11	2
SRCC	5	4	1	5	15	4
USGS	1	1	3	1	6	1

Pearson Correlation "linearity"

		75	< 0.05	Cor !=0	corr = 0	T-dist	Pearson
		1	on Correlation	Pears			v
-value rank	T-valu	p-value	95%U	95% L	Cor	x	У
	-	~0	0.91	0.87	0.89	all studies	ATLAS14
18.6 4	18.6	~0	0.94	0.86	0.91	MCD	ATLAS14
19.2 2	19.2	~0	0.94	0.86	0.91	NOAA1935	ATLAS14
18.9 3	18.9	~0	0.94	0.86	0.91	TP40	ATLAS14

Var Test "Ratio of Variances"

0.92

0.97

~0

df

25.7

vy = vx	F-dist	var r= 1	varr!=1	> 0.05	76				
.,									
У	X	v ratio	95% L	95%U	p-value	F-value	rank		
ATLAS14	all studies	1.07	0.88	1.31	0.50	-	-		
ATLAS14	MCD	1.12	0.71	1.76	0.63	1.12	2		
ATLAS14	NOAA1935	1.51	0.96	2.38	0.07	1.51	5		
ATLAS14	TP40	1.38	0.88	2.17	0.16	1.38	4		
ATLAS14	SRCC	1.05	0.67	1.64	0.84	1.05	1		
ATLAS14	USGS	0.74	0.47	1.16	0.19	0.74	3		

COMPARISON PLOT

LM CORRELATION TESTS

Overall Model

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.63597 0.20674 3.076 0.00225 **

DEPTH 0.92396 0.02383 38.766 < 2e-16 ***
```

Overall Model "0 Intercept"

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

DEPTH 0.996919 0.002375 419.8 <2e-16 ***
```

Study Specific "0 Intercept"

```
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
                     0.005248
                                188.6
                                         <2e-16 ***
STUDYMCD 0.989716
STUDYNOAA 0, 976696
                     0.005248
                                186.1
                                         <2e-16 ***
                     0.005248
                                193.3
STUDYSRCC 1.014611
                                         <2e-16 ***
STUDYTP40 1.005712
                     0.005248
                                191.6
                                         <2e-16 ***
                     0.005248
                                191.4
                                         <2e-16 ***
STUDYUSGS 1.004470
```

Study Specific "same slope"

```
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
DEPTH
           0.93955
                      0.02335 40.242 < 2e-16
           0.43459
                      0.20796
                                2.090 0.03730 *
STUDYMCD
STUDYNOAA 0.33794
                      0.21031
                                1.607 0.10891
                                3.098 0.00210 **
STUDYSRCC 0.62952
                      0.20323
STUDYTP40
          0.57144
                      0.20464
                                2.792 0.00550 **
         0.53337
                      0.20556
                                2.595 0.00983 **
STUDYUSGS
```

Study Specific "with Intercept"

```
coefficients:
               Estimate Std. Error t value Pr(>|t|)
                0.27096
                           0.44991
                                     0.602 0.54736
STUDYMCD
STUDYNOAA
               -1.25998
                           0.52931 -2.380 0.01779 *
                           0.42589
STUDYSRCC
                1.15895
                                     2.721 0.00681 **
               -0.52111
                           0.49120 -1.061 0.28942
STUDYTP40
STUDYUSGS
                1.61187
                           0.36231
                                     4.449 1.14e-05
                0.95835
                           0.05146 18.624 < 2e-16
DEPTH:STUDYMCD
DEPTH:STUDYNOAA 1.12101
                           0.05991 18.712 < 2e-16
DEPTH:STUDYSRCC 0.87723
                           0.04987 17.589 < 2e-16 ***
                           0.05718 18.665 < 2e-16 ***
DEPTH:STUDYTP40 1.06722
DEPTH:STUDYUSGS 0.81411
                           0.04184 19.458 < 2e-16 ***
```

Study Specific "same Intercept"

```
coefficients:
                Estimate Std. Error t value Pr(>|t|)
                            0.20293
                                      2.551
(Intercept)
                 0.51776
                                               0.0111 *
                                     39.327
                                               <2e-16 ***
                 0.93026
                            0.02365
DEPTH: STUDYMCD
DEPTH: STUDYNOAA 0.92047
                            0.02344
                                     39.274
                                               <2e-16 ***
                                               <2e-16 ***
DEPTH:STUDYSRCC 0.95193
                            0.02421
                                     39.325
                                               <2e-16 ***
DEPTH:STUDYTP40
                 0.94676
                            0.02409 39.297
                                               <2e-16 ***
DEPTH: STUDYUSGS
                 0.93957
                            0.02383 39.434
```

```
* P value < 0.05

** P value < 0.01

*** P value < 0.001
```


MEAN VALUE ANALYSIS

- Studies compared to Atlas 14: USGS, TP40, MCD, SRCC,
 NOAA1935 (slide 18)
- All (5) studies are <2% different on average to Atlas 14 (slide 17, 19,20)
- All (5) studies are within +/- 10 % difference at 2x sd ~95% (slide 17)
- 90% Confidence interval of the mean for all studies is <
 90% Cl Atlas 14 (slide 21)

References

- 1) Asquith, W. (1998); "Depth-Duration Frequency of Texas"; U.S. GEOLOGICAL SURVEY.
- 2) Asquith, W., & Roussel, M. (2004); "Atlas of Depth-Duration Frequency of Texas Annual Maxima"; U.S. Geological Survey.
- 3) Hershfield, D. M. (1963), "Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and return Periods from 1 to 100 Years"; United States Weather Bureau.
- 4) Kite, G. (1977); "Frequency and Risk Analyses in Hydrology"; Water Resources Publications.
- 5) Lowry, R. (1934); "Excessive Rainfall in Texas Bulletin No. 25"; State Reclamation District.
- 6) Morgan, A. (1917); "Storm Rainfall of Eastern United States, Technical Report Part ";The State of Ohio Miami Conservancy District.
- 7) Perica, S.; et al. (2013); "Precipitation-Frequency Atlas, NOAA Atlas 14"; NOAA.
- 8) Switzer, F. (1929); "Floods"; Sibley Journal of Engineering, 362-366.
- 9) Tortorelli, R., Rea, A., & Asquith, W. (1999); "Depth-Duration Frequency of Precipitation for Oklahoma"; U.S.

GEOLOGICAL SURVEY.

- 10) Williams, B. (1929); "A Study of Rainfall in Texas Bulletin No. 1"; State Reclamation District.
- 11) Yarnell, D. (1935); "Rainfall Intensity Frequency Data". United States Department of Agriculture
- 12) Faiers, G.E.; Keim, B.D.; Muller, R.A.; "Rainfall Frequency/Magnitude Atlas for the South-Central United States", SRCC Technical Paper; (1997)

Questions?

